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‘he equations of motion of a system of coaxial magneto-vortex rings are 
leveloped and some particular cases of this type of motion are invest- 
igated. By magneto-vortex rings is meant circular, vertical Plasma fila- 
ments along which currents flow. Outside the rings the fluid is taken to 
be ideal: incompressible and nonconducting. The conditions for the exist- 
ence and stability of an isolated magneto-vortex ring were investigated 
in [ 1 1, The analog of a system of coaxial rings is a pair of rectilinear 
magneto-vortex filaments with mutually opposed circulations and currents, 
arranged symmetrically with respect to a given axis. It is assumed that 
the motion of a magneto-vortex ring does not differ qualitatively from 
the motion of the corresponding pair of rectilinear magneto-vortex fila- 
ments; the motion of such a pair in the direction of a conducting and a 
nonconducting wall is investigated. It is shown that in the first case 

the ring will approach the wall and expand. In the second case, for 
certain values of the initial parameters, the ring contracts, approaching 
the wall. If, in this case, there is an aperture in the wall, the ring 
can jump through it. Such phenomena, according to witnesses, are observed 
when ball lightning approaches an obstacle [ 2 I. 

1. Fundamental equations. It is known that the motion of bodies 

with rnulticonuected volumes in an incompressible fluid may be described 

by the system of equations 

d 3T 
ir + i TijQj + $,= Qi ---- 

dt a& , 
(i = I,... , n) 

j-1 

(1.1) 

Here qi are generalized coordinates, pi are generalized velocities, 
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T is that part of the kinetic energy which the moving bodies and the 
fluid would have in the absence of cyclic motion; the quadratic form K 

of the circulations ri represents the kinetic energy of the cyclic 

motion; Qi is the generalized force corresponding to the generalized co- 
ordinate qi; the quantities p, are linear forms of the circulation, 
p, = arlrl + . . . + arkrk, whose coefficients are determined from the 
equations 

ai& (]‘=I,..., k) (k _ is the order (1.2) 
of connectedness 

If the region of flow under consideration is made singly connected by 

means of k partitions, then p kj defines the mass flow per unit time 
across the partition j, and, therefore, alj is the portion of mass flow 
across partition j associated with unit time rate of change of the co- 
ordinate qi. Equations (1.1) are seldom used, since the quadratic forms 
T and K are, generally speaking, unknown, and can be determined only from 
the solution of the corresponding hydrodynamic problem, which in the 
majority of cases is very difficult. However, if the bodies being con- 
sidered are very thin, for instance vortex filaments, the equations can 
be applied. 

Let us go to some concrete examples. Consider an ideal incompressible 
nonconducting fluid, containing thin plasma vortex rings or rectilinear 
filaments, along which currents Ij are flowing, having the same direc- 
tions as the vortices or opposite to them. Outside the vortex filaments 
the fluid motion is irrotational and cyclic, with a velocity which is 
determined by the Biot-Savart formula. The currents flowing along the 
filaments induce in the surroundings a magnetic field, whose intensity 
is also defined by the Biot-Savart law. It is considered that the field 
does not interact with the surrounding medium. In view of this, the 
circulation I’around an arbitrary closed contour must be conserved, and, 
consequently, the vortex filaments cannot leave that portion of the 
plasma to which they became attached in the initial moment of motion; 
that is, the vortex filaments will be frozen in the corresponding plasma 

filaments. Since the rings are assumed to be very thin, and the quadratic 

form T is proportional to the volumes T of the rings, we may neglect the 
quantity T and its derivatives in Equations (1.1). 

The generalized forces Q1 in the case under consideration are deter- 
mined ii41 as derivatives of the magnetic energy M of the currents, 
taken in the directions of the corresponding coordinates Qi = dM/dqi. 
Equations ( 1.1) take the following form: 
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liilrijPj+g=E (i=l....,n) 
, z 

(1.3) 

In addition, considering the plasma rings and filaments to be ideal 

conductors, we can add to the system (1.3) the conditions for constant 

flux of magnetic induction across the surface bounding the contour of the 

conductor 
di3M o -----_ 
dt i31j (I.41 

Thus the plasma rings and filaments must satisfy the system of equa- 

tions (1.3) and (1.4). 

Let us first investigate the motion of one plasma ring. We define the 

position of the ring by its radius r = Qi, the radius of its cross-section 

cc, the coordinates (t = q2, v = q4) of the point of intersection of the 

plane of the ring with the axis of symnetry, and the angle 8 = q3, which 

the axis makes with a chosen direction (Fig. 1). 'Ihe kinetic energy of 

the motion of the fluid due to a single vortex ring and the magnetic 

energy of the circular current are, respectively 

K=q+$-G), 
> 

Here p is the density, c the velocity of light in vacuum. It should be 

noted that I- and p are connected by the condition of incompressibility, 

2n2rp2 = r = const. 

It is easy to see that of the quantities arj, which are equal to the 

mass flows through the hole in the ring, only 

a,, = -rcracos ep, abl = - Xr2 sin Bp 

are different from zero. Correspondingly, 

lj3 = - Inr2pcos0, & = -l?rnr2psin8 

'Ihe remaining quantities Bi = 0. 'Ihe equations of motion of the ring 

will have the following form: 

+ nr2p cos 8 tk f2nrpsin eh = 0 

2nrp cos er; - nr2p sin erQ= 0 
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- 27Crp COS CT’; - 2nrp sin 0I$ = - i+ 

nr2p sin WE - nr2p cos OI$ = 0 

~,(,I++~= const 
Fig. 1. 

It is evident that the first two equations can be satisfied only for 

r = const, 8 = const. Then, from the remaining equations, it follows that 

an isolated ring can only move forward in the direction of its axis, with 

a constant velocity 

'l%is formula agrees with the formula for the velocity of forward 

motion of a magneto-vortex ring as found from the solution of the exact 

equations of magnetohydrodynamics, under the assumption that the ring 

has small, but finite, dimensions [l 1. At first glance, it seems para- 
doxical that the ring can have no motion other than in the direction of 

its axis of symmetry. In fact, suppose we gave the ring some other initial 

motion, for example, rotation. 'lhen the ring should rotate under its 

inertia for at least some time. However, having neglected the mass (a 

measure of the inertia) in the development of the equations, it is not 

possible to consider that the ring can have inertia, and, consequently, 

it is not possible to impose an initial velocity. Equations (1.3)-(1.4) 

determine the velocities directly, not the accelerations. 

Now let us investigate the motion of two magneto-vortex rings with a 

cOrnnon axis of symmetry t. For the generalized coordinates we can take 

q1 = rl, the radius of the first ring; q2 = tl, the distance of its center 

from the origin of coordinates; q3 = r2, the radius of the second ring; 

94 = 5' the distance of the center of the second ring from the origin. 

The kinetic energy K of the cyclic motion and the magnetic energy Mare, 

respectively 
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Here rl, r2 are the volumes of the rings. 

4w.2 
k2 = (rl+ r2)2 + (q- T2)? ’ 

k’2 = 1 - k2 f(k) = ‘q F-&T 

where F and E are complete elliptic integrals. From Equations (1.2) it may 
be found that aI2 = - mrl*p, a*,= - crimp, analogously to the results 

for the preceding example. All the remaining quantities ai. = 0. Ihen, 

calculating the values Pi and yij, and putting them in (1.3j and (1.41, 

we obtain 

drl -= 
dt 

$:= (1-_22)&-$lnh2r2+~ (1 --_J2) (2)” [& j(k) + i&$-j 

21,rl (In y r13 -G) + I, Jfc,f (k) = (I& = const 

212r2 
( 
In F r23 - 4) + I, vrlr2f (k) = m2 = const 

For M= 0 the system of equations (1.6) becomes identical with the 

system of equations which define the motion of two coaxial vortex rings, 

which may be obtained from purely kinematic considerations [5 I, It is 

easy to see that the system (1.6) h as an integral of conservation of im- 

pulse, rlrl* + r2r2* = const, and an integral of energy conservation, 

K+ M= const. 

'Ihe first integral can be easily obtained from the first two equations. 

It has the following physical significance. From the general theorems of 

hydrodynamics it follows that any irrotational motion in a singly- 

connected region can be established by impulsive pressures applied to the 

boundaries of the region. If the rings are divided by partitions, the re- 

gion of flow under consideration becomes singly-connected and the motion 
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in it can be established by means of impulsive pressure nrl’rl and 
RF2 T 2 applied to the partitions. Due to the absence of external forces 
the sum of these pressures must remain constant. 

The second integral can be obtained by computing the total derivative 

‘Ihe first sum is zero, in view of the first four equations of (1.6), 

and the second sum can be transformed in the following way: 

Putting this into (1.7) we obtain K + M = const. 

The system of equations (1.6) is very difficult, and therefore, in- 

stead of the motion of coaxial magneto-vortex rings, it is expedient to 

investigate the motion of a magneto-vortex pair with a common axis. By 

magneto-vortex pair we mean the combination of two rectilinear, plasma 

vortex filaments, along which equal currents are flowing in opposite 

directions, and which have equal and opposite circulations. 

If the rings are very thin, it may be assumed that the motion of 

magneto-vortex rings will not differ qualitatively from the motion of the 

corresponding magneto-vortex pairs, as is true also in the pure hydro- 

dynamic case. The kinetic energy of a system of two magneto-vortex pairs 

with a cotmnon axis y has the following value: 

The magnetic energy is 

M = g (1 + 4 In ‘5) + $ (1 + 4 In $) + ‘% F (x1, x2, yl, yz) 

(Xl - 4” + (Y1- YZP 
F c% x2:2, hY2) = - lyzl + r2)2+ (yl_yyz)" 

Here 2nl, 2x2 are the distances between the vortices of the two pairs; 

yl, y2 are the ordinates of the pairs. Computing, as in the preceding, 

the expressions for oij, pi, yij and putting them into (1.3) and (1.4) 

we obtain 
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da 
dt= - (1 - 5152) 4+a&, 2 = - (I - 5152) 2% 

dg = (1 ---Cl”) g1 + 2 (I - 5152) $ (1.8) 

2r151 ln LG + r252p ( x1,22, y1, y2) = q = cmlst 

2r2g2 III h2x2 + I&F (x1, x2, Y1, Y2) = CD2 = cod 

Here pl, p2 are the radii of the sections of the filaments 

gj= pgj (i=1,2), hj= 6 (j = f,2) 
3 

These equations, like the preceding ones, have integrals of conserva- 

tion of impulse and energy 

rlx, +- r2x2 = 2~ = const 

(1 + ji2) 2 lnh,x, + (1 + ca2) 2 In h,s2 - (1.3 

As may be seen from the equations, one magneto-vortex pair moves in 

the direction of its axis y with velocity 

U= &- (1 - 5”) ( cc Q, 
2r1n?G 

= const 
> 

2. Motion of a magneto-vortex pair in the presence of a 

conducting wall. Let us investigate the motion of a magneto-vortex 
pair in the direction of an infinitely conducting wall. ‘Ihe problem of 
this type of motion is equivalent to the problem of the motion of two 
magneto-vortex pairs with equal values of the abscissa, nl = n2 = X, and 

4 

A_ X 

Fig. 2. 

equal but opposite values of ordinate, 
circulation and current 

y, = -Y2 = Y7 rl=-r2=rl 
I,=-IIz=I, Cl = c.2 = 5 

In fact, in this case the fluid velo- 
city and the intensity of the magnetic 
field on the plane y = 0 will have only 
components in the x-direction, and, it 
follows, the boundary conditions at 
points y = 0 will correspond to those 
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for an infinitely conducting wall. Equations (1.8) in the case under con- 

sideration will take the form 

dx 

dt= -&(1-c2+xlfz;t)y9 $=&(I 

5 = f (In xg!fJ 

It is easy to obtain the integral 

-&+f= m2 = const 

Therefore [= const. Thus we have 

dx 

dt == 
=&(I-&& $=&(I 

- C2) (x2 ;?,a, x 

5”) --!- m2x3 

(2.1) 

(2.2) 

(2.3) 

From Equation (2.3) it is evident that for r > 0, 5 < 1 or for r < 0, 

5 > 1, the magneto-vortex pair recedes from the wall and shrinks; for 

IT< 0, [ < 1 or for r> 0, 5 > 1 the pair approaches the wall, expanding, 

and for II'= 0, [= 1 the pair is motionless. 

Figure 2 shows the trajectory of the motion of the magneto-vortex pair 

in the direction of the conducting wall. Assuming that rings behave in a 

similar fashion, it can be proved that a magneto-vortex ring interacts 

with an infinitely conducting wall exactly as an ordinary vortex ring 

interacts with a solid wall 15 1. 

3. Motion of a magneto-vortex pair in the direction of a 
nonconducting wall. The equations of such a motion may be obtained 
by investigating the motion of two rings having equal radii, equal but 

opposite circulations, with one of the rings having magnetic energy, the 

other being purely vertical having zero current. We will assume that the 

rings are arranged synzzetrically with respect to some plane. Then the 

normal component of velocity at points of this plane is equal to zero, 

and the normal component of magnetic intensity is different from zero. 

'These are the conditions that we would have on a stationary solid non- 

conducting wall. As before, the motion of a magneto-vortex ring will 

imitate the motion of the corresponding magneto-vortex pair. The system 

of equations for the motion of such a pair, under the condition that the 

plane y = 0 is nonconducting, has the form 

dx r 22 

dt= 4n y (x” + ~2) ’ 
-=- 2Glnkr = CD (3.1) 

'Ihe equations have the integral 
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Iknote 

lben 

Q = 9 + Y2 _A&+-!$ 
xzy2 

+=~x+C, u = u1 exp [2C02 (sz - 

Let 

Y2 w - - - = f (5) = xL& - “olyf;; 
x2 + Y2 4 in2 Ax 

along the integral curve (3.2). Then 

dl 2 
- =.- 

4c02 ln2 Aa 2c02 In2 ha 

dx ~311 ln2 hx - 1) + x 111s ax 

(3.2) 

- 1‘ ,I 

(3.3) 

(3.4) 

We will assume that at the initial instant x = a, y = b, 5 = Lo, 
Ut u 1. Then, from the last equation of (3.11, we have 

@ = 2& In ha. 

The behavior of the function f(x) is shown in Fig. 3. ‘lhe values of 

the roots x1, . . . . X, of the function Ax> 

in the interval l/A < x < m and their f 
number are determined by the initial con- 

ditions. However, the number of roots is 

always even, since f(r) + - - for x + = 

and f(x) + 0 for x + -, from the negative 

side. 

Depending on the magnitude of the 

initial value x = a, the following cases 

may occur: 
Fig. 3. 

First case. a < xl. For i7 > 0 the radius of the ring decreases and 

the ring approaches the wall with increasing velocity. For I’< 0 the 

radius of the ring grows and the ring recedes from the wall. Depending 

on the relation between the initial values of magnetic and kinetic 

energies 5, the following may occur: 

(a) For a large value of [a the root xl is large and the ring can 

recede so far that the presence of the wall is no longer felt; the 
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derivative dx/dt + 0 with increasing y and x -+ x0 < x1. In Fig. 4 are 
shown the integral curves corresponding to the initial 
values )I = 5, a = 2, b = 3, Lo = d 2 (curve 1) and also 

Ca=d3 ( curve 2). For positive value of the circulation 
I’ the ring approaches the wall very fast, and for nega- 
tive values it recedes. If there is an aperture in the 
wall, the ring jumps through it and goes to infinity. 

(b) If the value c,, is not large (of order 11, the 
ring will recede from the wall, growing until the time 
when the value x = x1 is reached; then the velocity dy/dt 
changes sign and the ring begins to approach the wall, 

Fig. 4. 
continuing to grow. Ihen, when the value of x becomes 
equal to x2 the ring again begins to recede. Such oscil- 

latory motion will continue until the ring grows so much that the velo- 

city dy/dt becomes zero. Actually, the ring becomes diffuse at some dis- 
tance from the wall. 

Second case. x1 < a < x2, For I? > 0 the diameter of the ring decreases, 
but the ring moves away from the wall. 

(a) If for this case the quantity 5, is small, the ring recedes from 
the wall. 

(b) If (a is not very small then with decreasing radius the ratio of 
the magnetic to kinetic energies c2 = M/K 

increases and after x reaches the value x1 
the ring returns to the wall. On Fig. 5 are 

Y 

shown the integral curves for the case where 
I 2 

[a is small (co = l/2, l/ d 3). For positive 
circulation (increasing x) the ring at first 

q 

recedes from the wall like a pure vortex 
ring. On Fig. 6 is shown the integral curve 

: L 
1 

corresponding to small difference between 2 2 
the initial values of magnetic and kinetic 
energies. The ring at first recedes from the 

wall and then approaches it. 1,’ (1 
Of23 4s 

For I’ < 0 the ring expands and approaches 
the wall; for small values of [a the root x2 

Fig. 5. 

is located far away, and when x reaches the 
value x2 the velocity dy/dt, even though it 
changes sign, will be so small that the ring will practically stop and 

diffuse at some distance from the wall (Fig. 5). 

If co is equal to unity, the root x0 and the following ones may be 
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relatively near. 'lhe ring will exhibit an oscillatory motion toward the 

wall and away until it also diffuses at some distance from the wall. 

Such a regime of the motion is shown in Fig. 6. It corresponds to the 

initial values 5, = 2/d/5, a = 2, b = 4, A = 5. Further cases of the 
magnitude of the initial values n = a 

will not differ qualitatively from Y 
the case considered in the dependence 

on the roots of f(x). 'lhe difference 6- 

will consist only of the number of 

oscillatory movements toward the wall 4 

and back. In [l 1 it was shown that 
for sufficiently high values of co 

z- 

there may be pressures inside the 

magneto-vortex ring which greatly ex- ' 1 2 3 OX 

teed the pressure in the surrounding 

gas. It was shown there that the 
Fig. 6. 

magneto-vortex ring is stable to small 

perturbations of its surface. 'These two circumstances make it valid to 

investigate the magneto-vortex ring as a possible model of ball light-- 

ning. 'lhe magnetc-vortex ring motion toward a nonconducting wall invest- 

igated in this article shows that ball lightning can penetrate into a 

room through narrow apertures 12.1. 

In conclusion, the author expresses his gratitude to his adviser L.I. 

Sedov for valuable suggestions and advice. 
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